AP Calculus AB Course Introduction Sessions

Thursday, August 2nd 8:00 am to 10:00 am Room W218

OR

Friday, August 3rd 8:00 am to 10:00 am Room W218

- Meet the instructor and receive general course information
- Get help on the summer assignment and know what to expect for the first test
- Receive information on extra help sessions throughout the school year
- Ask any questions you may have about the class

Name:	

AP CALCULUS AB SUMMER ASSIGNMENT

Solve each of the following problems, **showing all work**. Do <u>NOT</u> just write the answer. Be sure all answers are in simplified form. Box in and/or highlight your answers. The assignment is due on the first day of class. The first unit test of the semester will include topics from this assignment following a brief review of these topics.

Write each of the following absolute value equations in piecewise form. Show work leading to your **answers. Ex:** f(x) = |3x+2|. Determine where the absolute value expression is positive and where it is negative by setting 3x + 2 = 0 and solving to get $x = \frac{-2}{3}$. Since $3x + 2 \ge 0$ for any $x \ge \frac{-2}{3}$, the expression remains positive when the absolute value is dropped. Since 3x + 2 < 0 for any $x < \frac{-2}{3}$, the expression $f(x) = |3x+2| = \begin{cases} 3x+2, x \ge \frac{-2}{3} \\ -3x-2, x < \frac{-2}{2} \end{cases}$ becomes negative when the absolute value is dropped. 2. $f(x) = |4x^2 - 1|$ 3. $f(x) = |1 - x^2|$ 1. f(x) = |2x-5|Find each of the following for $f(x) = x^2 + 3x + 1$ and $g(x) = \frac{1}{x+4}$. Simplify your answers. 6. $g^{-1}(x)$ 5. f(x+h)4. f(g(x))Find each of the following values in exact form 7. $\sin\left(\frac{4\pi}{3}\right)$ 8. $\cos\left(\frac{7\pi}{4}\right)$ 9. $\tan\left(\frac{7\pi}{6}\right)$ 11. $\cos\left(\frac{-2\pi}{3}\right)$ 12. $\csc\left(\frac{3\pi}{2}\right)$ 10. $sin(5\pi)$ 13. $\sec\left(\frac{2\pi}{3}\right)$ 14. $\cot\left(\frac{11\pi}{6}\right)$ 15. $\csc(\pi)$ Find each of the following for the piecewise function $f(x) = \begin{cases} \sqrt{x}, x \ge 0 \\ 2 + 1 \le 0 \end{cases}$. Be sure answers are in exact form. Show your work!!

16. f(-2) 17. f(25) 18. f(-9)

Solve each of the following for *y* in terms of *x*. Show all work.

- 19. 3xy + 2y = -6x + 1 20. $3y^2 + 14x = 2x^2$
- 21. $9x 3y + 2xy = 7x^2 + 4y$ 22. $12x^2y + 70xy - 3x^3 + 12x = 9y + 13x^2$

Sketch the graph of each function.

23. $f(x) = (x+2)^2 - 3$ 24. f(x) = |x+1| + 425. $f(x) = (x-1)^3$ 26. $f(x) = -\sqrt{x-5} + 2$ 27. $f(x) = 2^x + 3$ 28. $f(x) = \frac{1}{2}^{(x-2)}$ 29. $f(x) = -2(x-1)^2 + 4$ 30. $f(x) = 2\sin(\pi x) - 3$ 31. $f(x) = -\cos(2x - \pi)$ 32. $f(x) = e^x - 2$ 33. $f(x) = \ln(x+3)$ 34. $f(x) = \tan\left(\frac{x}{2}\right) + 1$

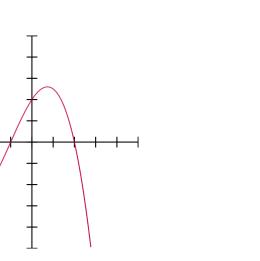
Find any asymptotes (vertical, horizontal, or slant) for the following functions and any x-intercepts. Do Not Graph.

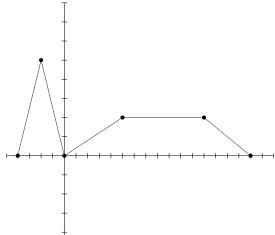
35.
$$f(x) = \frac{x}{x^3 - 3}$$
 36. $f(x) = \frac{x^3 + 2x^2 - x - 2}{x^2 + x - 6}$

Solve each of the following equations for *x*. Use algebra and show your work. For trigonometric equations, give all exact solutions on the interval $[0,2\pi)$.

- 37. $x^4 + x^2 2 = 0$ 38. $x^{\frac{1}{2}} + \frac{1}{x^{\frac{1}{2}}} 2 = 0$ 39. $15x \frac{4}{x} = 4$
- 40. $-x^5 + 29x^3 100x = 0$ 41. $x^{\frac{2}{3}} + 2x^{\frac{1}{3}} - 15 = 0$ 42. $4x^2 - x^3 = 0$
- 43. $-x^3 5x^2 + 4x + 20 = 0$ 44. $-x^4 + x^3 + 20x^2 = 0$ 45. $\ln(x^2 3x 5) = 0$
- 49. $\ln(x^2 + 5x + 7) = 0$ 50. $x^2 e^x 3x e^x 10e^x = 0$ 51. $\ln(5x) \ln(x+2) = 0$

Solve each trigonometric equation for x.Give all exact solutions on the interval $[0,2\pi)$.52. $2\sin^2 x - \sin x = 0$ 53. $2\cos^2 x + \cos x - 1 = 0$ 54. $\sin x + \cos x = 0$ 55. $6\tan(2x) = 6$ 56. $2\sin x \cos x = \sqrt{3}\cos x$ 57. $\sec^2 x - \sec x = 2$ 58. $2\sin^2 x - 3\cos x = 0$ 59. $4\cos^2 x = 3$ 60. $\tan^2\left(\frac{x}{2}\right) - 3 = 0$


Sketch a graph of each piecewise function


61.
$$f(x) = \begin{cases} 3 & x < -2 \\ 2x - 1 & -2 \le x \le 1 \\ x^2 & x > 1 \end{cases}$$

63. Given the graph of f(x) below, identify the intervals where f is increasing and decreasing. Then identify where the values of f go from negative to positive and positive to negative.

62.
$$f(x) = \begin{cases} e^{\frac{x}{\pi}} & x < \pi \\ \sin x & \pi \le x \le 2\pi \end{cases}$$

64. Find the area of the region between the lines and the *x*-axis using formulas from Geometry. Show your work!!

